Degenerating sequences of conformal classes and the conformal Steklov spectrum
نویسندگان
چکیده
Abstract Let $\Sigma $ be a compact surface with boundary. For given conformal class c on the functional $\sigma _k^*(\Sigma ,c)$ is defined as supremum of k th normalized Steklov eigenvalue over all metrics in . We consider behavior this moduli space classes A precise formula for limit ,c_n)$ when sequence $\{c_n\}$ degenerates obtained. apply to study natural analogs Friedlander–Nadirashvili invariants closed manifolds $\inf _{c}\sigma , where infimum taken show that these quantities are equal $2\pi k$ any As an application our techniques we obtain new estimates nonorientable terms its genus and number boundary components.
منابع مشابه
Extremal eigenvalues of the Laplacian in a conformal class of metrics : the ” conformal spectrum ”
Let M be a compact connected manifold of dimension n endowed with a conformal class C of Riemannian metrics of volume one. For any integer k ≥ 0, we consider the conformal invariant λk(C) defined as the supremum of the k-th eigenvalue λk(g) of the Laplace-Beltrami operator ∆g, where g runs over C. First, we give a sharp universal lower bound for λk(C) extending to all k a result obtained by Fri...
متن کاملIntegral Means Spectrum of Random Conformal Snowflakes
It is known that extremal configurations in many important problems in classical complex analysis exhibit complicated fractal structure. This makes such problems extremely difficult. The classical example is the coefficient problem for the class of bounded univalent functions. Let φ(z) = z + a2z 2 + a3z 3 + . . . be a bounded univalent map in the unit disc. One can ask what are the maximal poss...
متن کاملthe impact of attending efl classes on the level of depression of iranian female learners and their attributional complexity
می توان گفت واقعیت چند لایه ا ی کلاس های زبان انگلیسی بسیار حائز اهمیت است، زیرا عواطف و بینش های زبان آموزان تحت تاثیر قرار می گیرد. در پژوهش پیش رو، گفته می شود که دبیران با در پیش گرفتن رویکرد فرا-انسانگرایی ، قادرند در زندگی دانش آموزانشان نقش مهمی را ایفا سازند. بر اساس گفته ی ویلیامز و بردن (2000)، برای کرل راجرز، یکی از بنیان گذاران رویکرد انسانگرایی ، یادگیری بر مبنای تجربه، نوعی از یاد...
Harmonicity of Horizontally Conformal Maps and Spectrum of the Laplacian
We discuss the harmonicity of horizontally conformal maps and their relations with the spectrum of the Laplacian. We prove that if φ : M → N is a horizontally conformal map such that the tension field is divergence free, then φ is harmonic. Furthermore, if N is noncompact, then φ must be constant. Also we show that the projection of a warped product manifold onto the first component is harmonic...
متن کاملConformal mappings preserving the Einstein tensor of Weyl manifolds
In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian Journal of Mathematics
سال: 2021
ISSN: ['1496-4279', '0008-414X']
DOI: https://doi.org/10.4153/s0008414x21000171